168 research outputs found

    The hardness of perfect phylogeny, feasible register assignment and other problems on thin colored graphs

    Get PDF
    AbstractIn this paper, we consider the complexity of a number of combinatorial problems; namely, Intervalizing Colored Graphs (DNA physical mapping), Triangulating Colored Graphs (perfect phylogeny), (Directed) (Modified) Colored Cutwidth, Feasible Register Assignment and Module Allocation for graphs of bounded pathwidth. Each of these problems has as a characteristic a uniform upper bound on the tree or path width of the graphs in “yes”-instances. For all of these problems with the exceptions of Feasible Register Assignment and Module Allocation, a vertex or edge coloring is given as part of the input. Our main results are that the parameterized variant of each of the considered problems is hard for the complexity classes W[t] for all t∈N. We also show that Intervalizing Colored Graphs, Triangulating Colored Graphs, and Colored Cutwidth are NP-Complete

    Refining Protein Subcellular Localization

    Get PDF
    The study of protein subcellular localization is important to elucidate protein function. Even in well-studied organisms such as yeast, experimental methods have not been able to provide a full coverage of localization. The development of bioinformatic predictors of localization can bridge this gap. We have created a Bayesian network predictor called PSLT2 that considers diverse protein characteristics, including the combinatorial presence of InterPro motifs and protein interaction data. We compared the localization predictions of PSLT2 to high-throughput experimental localization datasets. Disagreements between these methods generally involve proteins that transit through or reside in the secretory pathway. We used our multi-compartmental predictions to refine the localization annotations of yeast proteins primarily by distinguishing between soluble lumenal proteins and soluble proteins peripherally associated with organelles. To our knowledge, this is the first tool to provide this functionality. We used these sub-compartmental predictions to characterize cellular processes on an organellar scale. The integration of diverse protein characteristics and protein interaction data in an appropriate setting can lead to high-quality detailed localization annotations for whole proteomes. This type of resource is instrumental in developing models of whole organelles that provide insight into the extent of interaction and communication between organelles and help define organellar functionality

    Gene-expression profiling of microdissected breast cancer microvasculature identifies distinct tumor vascular subtypes

    Get PDF
    INTRODUCTION: Angiogenesis represents a potential therapeutic target in breast cancer. However, responses to targeted antiangiogenic therapies have been reported to vary among patients. This suggests that the tumor vasculature may be heterogeneous and that an appropriate choice of treatment would require an understanding of these differences. METHODS: To investigate whether and how the breast tumor vasculature varies between individuals, we isolated tumor-associated and matched normal vasculature from 17 breast carcinomas by laser-capture microdissection, and generated gene-expression profiles. Because microvessel density has previously been associated with disease course, tumors with low (n = 9) or high (n = 8) microvessel density were selected for analysis to maximize heterogeneity for this feature. RESULTS: We identified differences between tumor and normal vasculature, and we describe two subtypes present within tumor vasculature. These subtypes exhibit distinct gene-expression signatures that reflect features including hallmarks of vessel maturity. Potential therapeutic targets (MET, ITGAV, and PDGFRβ) are differentially expressed between subtypes. Taking these subtypes into account has allowed us to derive a vascular signature associated with disease outcome. CONCLUSIONS: Our results further support a role for tumor microvasculature in determining disease progression. Overall, this study provides a deeper molecular understanding of the heterogeneity existing within the breast tumor vasculature and opens new avenues toward the improved design and targeting of antiangiogenic therapies

    Global Survey of Organ and Organelle Protein Expression in Mouse: Combined Proteomic and Transcriptomic Profiling

    Get PDF
    SummaryOrgans and organelles represent core biological systems in mammals, but the diversity in protein composition remains unclear. Here, we combine subcellular fractionation with exhaustive tandem mass spectrometry-based shotgun sequencing to examine the protein content of four major organellar compartments (cytosol, membranes [microsomes], mitochondria, and nuclei) in six organs (brain, heart, kidney, liver, lung, and placenta) of the laboratory mouse, Mus musculus. Using rigorous statistical filtering and machine-learning methods, the subcellular localization of 3274 of the 4768 proteins identified was determined with high confidence, including 1503 previously uncharacterized factors, while tissue selectivity was evaluated by comparison to previously reported mRNA expression patterns. This molecular compendium, fully accessible via a searchable web-browser interface, serves as a reliable reference of the expressed tissue and organelle proteomes of a leading model mammal

    Drug-resistant genotypes and multi-clonality in Plasmodium falciparum analysed by direct genome sequencing from peripheral blood of malaria patients.

    Get PDF
    Naturally acquired blood-stage infections of the malaria parasite Plasmodium falciparum typically harbour multiple haploid clones. The apparent number of clones observed in any single infection depends on the diversity of the polymorphic markers used for the analysis, and the relative abundance of rare clones, which frequently fail to be detected among PCR products derived from numerically dominant clones. However, minority clones are of clinical interest as they may harbour genes conferring drug resistance, leading to enhanced survival after treatment and the possibility of subsequent therapeutic failure. We deployed new generation sequencing to derive genome data for five non-propagated parasite isolates taken directly from 4 different patients treated for clinical malaria in a UK hospital. Analysis of depth of coverage and length of sequence intervals between paired reads identified both previously described and novel gene deletions and amplifications. Full-length sequence data was extracted for 6 loci considered to be under selection by antimalarial drugs, and both known and previously unknown amino acid substitutions were identified. Full mitochondrial genomes were extracted from the sequencing data for each isolate, and these are compared against a panel of polymorphic sites derived from published or unpublished but publicly available data. Finally, genome-wide analysis of clone multiplicity was performed, and the number of infecting parasite clones estimated for each isolate. Each patient harboured at least 3 clones of P. falciparum by this analysis, consistent with results obtained with conventional PCR analysis of polymorphic merozoite antigen loci. We conclude that genome sequencing of peripheral blood P. falciparum taken directly from malaria patients provides high quality data useful for drug resistance studies, genomic structural analyses and population genetics, and also robustly represents clonal multiplicity

    Training in the practice of noninvasive brain stimulation: Recommendations from an IFCN committee

    Get PDF
    © 2020 As the field of noninvasive brain stimulation (NIBS) expands, there is a growing need for comprehensive guidelines on training practitioners in the safe and effective administration of NIBS techniques in their various research and clinical applications. This article provides recommendations on the structure and content of this training. Three different types of practitioners are considered (Technicians, Clinicians, and Scientists), to attempt to cover the range of education and responsibilities of practitioners in NIBS from the laboratory to the clinic. Basic or core competencies and more advanced knowledge and skills are discussed, and recommendations offered regarding didactic and practical curricular components. We encourage individual licensing and governing bodies to implement these guidelines

    Submicroscopic Gametocytes and the Transmission of Antifolate-Resistant Plasmodium falciparum in Western Kenya

    Get PDF
    BACKGROUND: Single nucleotide polymorphisms (SNPs) in the dhfr and dhps genes are associated with sulphadoxine-pyrimethamine (SP) treatment failure and gametocyte carriage. This may result in enhanced transmission of mutant malaria parasites, as previously shown for chloroquine resistant parasites. In the present study, we determine the association between parasite mutations, submicroscopic P. falciparum gametocytemia and malaria transmission to mosquitoes. METHODOLOGY/PRINCIPAL FINDINGS: Samples from children treated with SP alone or in combination with artesunate (AS) or amodiaquine were genotyped for SNPs in the dhfr and dhps genes. Gametocytemia was determined by microscopy and Pfs25 RNA-based quantitative nucleic acid sequence-based amplification (Pfs25 QT-NASBA). Transmission was determined by membrane-feeding assays. We observed no wild type infections, 66.5% (127/191) of the infections expressed mutations at all three dhfr codons prior to treatment. The presence of all three mutations was not related to higher Pfs25 QT-NASBA gametocyte prevalence or density during follow-up, compared to double mutant infections. The proportion of infected mosquitoes or oocyst burden was also not related to the number of mutations. Addition of AS to SP reduced gametocytemia and malaria transmission during follow-up. CONCLUSIONS/SIGNIFICANCE: In our study population where all infections had at least a double mutation in the dhfr gene, additional mutations were not related to increased submicroscopic gametocytemia or enhanced malaria transmission. The absence of wild-type infections is likely to have reduced our power to detect differences. Our data further support the use of ACT to reduce the transmission of drug-resistant malaria parasites

    The function of fear in institutional maintenance: Feeling frightened as an essential ingredient in haute cuisine

    Get PDF
    Fear is a common and powerful emotion that can regulate behaviour. Yet institutional scholars have paid limited attention to the function of fear in processes of institutional reproduction and stability. Drawing on an empirical study of elite chefs within the institution of haute cuisine, this article finds that the multifaceted emotion of fear characterised their experiences and served to sustain their institution. Chefs’ individual feelings of fear prompted conformity and a cognitive constriction, which narrowed their focus on to the precise reproduction of traditional practices whilst also limiting challenges to the norms underpinning the institution. Through fear work, chefs used threats and violence to connect individual experiences of fear to the violation of institutionalized rules, sustaining the conditions in which fear-driven maintenance work thrived. The study also suggests that fear is a normative element of haute cuisine in its own right, where the very experience and eliciting of fear preserved an essential institutional ingredient. In this way, emotions such as fear do not just accompany processes of institutionalization but can be intimately involved in the maintenance of institutions

    Prospective Home-use Study on Non-invasive Neuromodulation Therapy for Essential Tremor.

    Get PDF
    Highlights: This prospective study is one of the largest clinical trials in essential tremor to date. Study findings suggest that individualized non-invasive neuromodulation therapy used repeatedly at home over three months results in safe and effective hand tremor reduction and improves quality of life for many essential tremor patients. Background: Two previous randomized, controlled, single-session trials demonstrated efficacy of non-invasive neuromodulation therapy targeting the median and radial nerves for reducing hand tremor. This current study evaluated efficacy and safety of the therapy over three months of repeated home use. Methods: This was a prospective, open-label, post-clearance, single-arm study with 263 patients enrolled across 26 sites. Patients were instructed to use the therapy twice daily for three months. Pre-specified co-primary endpoints were improvements on clinician-rated Tremor Research Group Essential Tremor Rating Assessment Scale (TETRAS) and patient-rated Bain & Findley Activities of Daily Living (BF-ADL) dominant hand scores. Other endpoints included improvement in the tremor power detected by an accelerometer on the therapeutic device, Clinical and Patient Global Impression scores (CGI-I, PGI-I), and Quality of Life in Essential Tremor (QUEST) survey. Results: 205 patients completed the study. The co-primary endpoints were met (p≪0.0001), with 62% (TETRAS) and 68% (BF-ADL) of \u27severe\u27 or \u27moderate\u27 patients improving to \u27mild\u27 or \u27slight\u27. Clinicians (CGI-I) reported improvement in 68% of patients, 60% (PGI-I) of patients reported improvement, and QUEST improved (p = 0.0019). Wrist-worn accelerometer recordings before and after 21,806 therapy sessions showed that 92% of patients improved, and 54% of patients experienced ≥50% improvement in tremor power. Device-related adverse events (e.g., wrist discomfort, skin irritation, pain) occurred in 18% of patients. No device-related serious adverse events were reported. Discussion: This study suggests that non-invasive neuromodulation therapy used repeatedly at home over three months results in safe and effective hand tremor reduction in many essential tremor patients

    From waste to food : optimising the breakdown of oil palm waste to provide substrate for insects farmed as animal feed

    Get PDF
    Waste biomass from the palm oil industry is currently burned as a means of disposal and solutions are required to reduce the environmental impact. Whilst some waste biomass can be recycled to provide green energy such as biogas, this investigation aimed to optimise experimental conditions for recycling palm waste into substrate for insects, farmed as a sustainable high-protein animal feed. NMR spectroscopy and LC-HRMS were used to analyse the composition of palm empty fruit bunches (EFB) under experimental conditions optimised to produce nutritious substrate rather than biogas. Statistical pattern recognition techniques were used to investigate differences in composition for various combinations of pre-processing and anaerobic digestion (AD) methods. Pre-processing methods included steaming, pressure cooking, composting, microwaving, and breaking down the EFB using ionic liquids. AD conditions which were modified in combination with pre-processing methods were ratios of EFB:digestate and pH. Results show that the selection of pre-processing method affects the breakdown of the palm waste and subsequently the substrate composition and biogas production. Although large-scale insect feeding trials will be required to determine nutritional content, we found that conditions can be optimised to recycle palm waste for the production of substrate for insect rearing. Pre-processing EFB using ionic liquid before AD at pH6 with a 2:1 digestate:EFB ratio were found to be the best combination of experimental conditions
    corecore